

Page 1 of 7 pages

Keyes

USB Host Shield (Rev. 1)

General Description

The Keyes USB Host Shield allows you to connect a USB device to your Arduino board. It is based

on the MAX3421E (datasheet), which is a USB peripheral/host controller containing the digital logic and

analog circuitry necessary to implement a full-speed USB peripheral or a full-/low-speed host compliant

to USB specification rev 2.0.

This is based on revision 2.0 of USB Host Shield. Thanks to new interface layout it is now

compatible with more Arduinos - not only UNO and Duemilanove, but also Mega and Mega 2560 work

with Standard variant of this shield out of the box. No more SPI re-wiring and code modifications - just

solder included stackable connectors (2x3 ICSP connector's female side should be facing down), plug and

play!

http://www.maximintegrated.com/datasheet/index.mvp/id/3639

Page 2 of 7 pages

Specifications

 Works with standard (dual 5/3.3V) and 3.3V-only (for example, Arduino Pro) boards.

 Operates over the extended -40°C to +85°C temperature range

 Complies with USB Specification Revision 2.0 (Full-Speed 12Mbps Peripheral, Full-/Low-Speed

12Mbps/1.5Mbps Host)

The following device classes are currently supported by the shield:

 HID devices, such as keyboards, mice, joysticks, etc.

 Mass storage devices, such as USB sticks, memory card readers, external hard drives (FAT32

Type File System - Arduino Mega only)

Schematic

Page 3 of 7 pages

Shield Overview

 Power Select 2 solder jumpers marked “5V” and “3.3V”. They are used for different power

configurations. The configuration shown, when both jumpers are closed, is suitable for official

Arduinos, such as UNO, Duemilanove, Mega and Mega 2560. See Power Options section for

detailed explanation.

 Power pins are used to connect to power pins of Arduino board. RESET, 3.3V, 5V and GROUND

signals from this connector are used.

 Analog pins are not used by the shield. They are provided to simplify mounting and provide

pass-through for shields mounted atop of USB Host Shield in a stack.

 GPIN pins. Eight 3.3V general-purpose digital input pins of MAX3421E. They are used primarily

to interface with buttons, rotary encoders and such. GPIN pins can also be programmed as a

source of MAX3421E interrupt. An example of GPIN use can be seen in digital camera controller

project.

http://www.circuitsathome.com/camera-control/arduino-based-controller-for-canon-eos-cameras

Page 4 of 7 pages

 ICSP connector is used by the shield to send/receive data using SPI interface. SCK, MOSI, MISO

and RESET signals from this connector are used.

 GPOUT pins are eight 3.3V general-purpose digital output pins of MAX3421E. They can be used

for many purposes; I use it to drive HD44780-compatible character LCD, as can be seen in digital

camera controller circuit, as well as this keyboard example. Max_LCD library which is part of

standard USB Host library software package uses some of GPOUT pins.

 Digital I/O pins 0-7, like already mentioned analog pins are not used by the shield and provided

only for convenience.

 Digital I/O pins 8-13. In this group, the shield in its default configuration uses pins 9 and 10 for

INT and SS interface signals. However, standard-sized Arduino boards, such as Duemilanove and

UNO have SPI signals routed to pins 11-13 in addition to ICSP connector, therefore shields using

pins 11-13 combined with standard-sized Arduinos will interfere with SPI. INT and SS signals can

be re-assigned to other pins (see below); SPI signals cannot.

 MAX3421E interface pads are used to make shield modifications easier. Pads for SS and INT

signals are routed to Arduino pins 10 and 9 via solder jumpers. In case pin is taken by other

shield a re-routing is necessary, a trace is cut and corresponding pad is connected with another

suitable Arduino I/O ping with a wire. To undo the operation, a wire is removed and jumper is

closed. See interface modifications section for more information. GPX pin is not used and is

available on a separate pad to facilitate further expansion. It can be used as a second interrupt

pin of MAX3421E.

 VBUS power pad. This pad is used in advanced power configurations, described in Power

Options section.

How to Test

1. Mount the Keyes USB Host Shield into your Arduino.

2. Download USB Host Shield Library and extract it to library folder in your Arduino directory.

3. Open board_qc then click upload. You can find this sketch at Arduino IDE File> Examples >

USB_Host_Shield > board_qc.

4. Click Serial Monitor and set the baud rate to 115200.

5. When prompted, plug in a USB device to the USB Host Shield’s USB port.

http://www.circuitsathome.com/mcu/how-to-drive-usb-keyboard-from-arduino
http://www.tinkbox.ph/sites/tinkbox.ph/files/downloads/USB_Host_Shield.zip

Page 5 of 7 pages

6. If the shield is fully functional, you should be seeing this Serial Monitor:

Sample Program

 Track a mouse actions through Arduino. This program will display the status of the mouse

connected to the Keyes USB Host shield. This sketch is also included in the USB Host Library.

 You need:

 Arduino

 Keyes USB Host Shield

Sketch

#include <hidboot.h>

#include <usbhub.h>

// Satisfy IDE, which only needs to see the include statment in the in

o.

#ifdef dobogusinclude

#include <spi4teensy3.h>

#endif

class MouseRptParser : public MouseReportParser

Page 6 of 7 pages

{

protected:

 virtual void OnMouseMove (MOUSEINFO *mi);

 virtual void OnLeftButtonUp (MOUSEINFO *mi);

 virtual void OnLeftButtonDown (MOUSEINFO *mi);

 virtual void OnRightButtonUp (MOUSEINFO *mi);

 virtual void OnRightButtonDown (MOUSEINFO *mi);

 virtual void OnMiddleButtonUp (MOUSEINFO *mi);

 virtual void OnMiddleButtonDown (MOUSEINFO *mi);

};

void MouseRptParser::OnMouseMove(MOUSEINFO *mi)

{

 Serial.print("dx=");

 Serial.print(mi->dX, DEC);

 Serial.print(" dy=");

 Serial.println(mi->dY, DEC);

};

void MouseRptParser::OnLeftButtonUp (MOUSEINFO *mi)

{

 Serial.println("L Butt Up");

};

void MouseRptParser::OnLeftButtonDown (MOUSEINFO *mi)

{

 Serial.println("L Butt Dn");

};

void MouseRptParser::OnRightButtonUp (MOUSEINFO *mi)

{

 Serial.println("R Butt Up");

};

void MouseRptParser::OnRightButtonDown (MOUSEINFO *mi)

{

 Serial.println("R Butt Dn");

};

void MouseRptParser::OnMiddleButtonUp (MOUSEINFO *mi)

{

 Serial.println("M Butt Up");

};

void MouseRptParser::OnMiddleButtonDown (MOUSEINFO *mi)

{

 Serial.println("M Butt Dn");

};

USB Usb;

USBHub Hub(&Usb);

HIDBoot<HID_PROTOCOL_MOUSE> HidMouse(&Usb);

uint32_t next_time;

MouseRptParser Prs;

void setup()

{

 Serial.begin(115200);

Page 7 of 7 pages

 while (!Serial); // Wait for serial port to connect - used on

Leonardo, Teensy and other boards with built-in USB CDC serial

connection

 Serial.println("Start");

 if (Usb.Init() == -1)

 Serial.println("OSC did not start.");

 delay(200);

 next_time = millis() + 5000;

 HidMouse.SetReportParser(0,(HIDReportParser*)&Prs);

}

void loop()

{

 Usb.Task();

}

Results

